If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2+16x+8=0
a = -8; b = 16; c = +8;
Δ = b2-4ac
Δ = 162-4·(-8)·8
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{2}}{2*-8}=\frac{-16-16\sqrt{2}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{2}}{2*-8}=\frac{-16+16\sqrt{2}}{-16} $
| −4(x−7)+7x=−23 | | (51/5)5=25xx= | | u/3+17=35 | | -3/4x+5/6=5x-125/3 | | -.06x^2-4x+.5x+6x=P | | (81/3)2=4xx= | | 47=2y+17 | | x+15=-5x+69 | | x+16=4x-14 | | -x^2+3x-2=2x^2-3x+2 | | 7x(x-2)+2x-4=0 | | -x-14=-3x-24 | | -3x30=90 | | 4x-7=16x+19 | | 9/(-15)=t | | -19x^2-110x+38=0 | | 30=2y+8 | | 3p=8=38 | | 30=x/5-17 | | x(50-x)=600 | | 4(b-2)-10=2(b+3 | | 9y+1+3y+3+68=180 | | 2^x+4=28 | | 7w=80;w=11 | | 2×{3x+1}+6=20 | | 12z-6+15z=-27z-5 | | 4(b-2)-10=2(b=3 | | -3(6-4x)=-2(6x+9) | | 21x-2=360 | | e-6=15 | | 3x*x=132 | | 2+3p=8 |